
die hochschullehre – Jahrgang 12 – 2026 (18)

Herausgebende des Journals: Svenja Bedenlier, Ivo van den Berk, Sarah Berndt, Jonas Leschke,

Peter Salden, Antonia Scholkmann, Angelika Thielsch

Beitrag in der Rubrik Praxisforschung

DOI: 10.3278/HSL2618W

ISSN: 2199–8825 wbv.de/die-hochschullehre

KI-unterstützte Programmierung mittels

ergebniszentrierter Fehlerklassifikation

Potenziale zur Schaffung neuer Lernräume

Sebastian Stemmler, Jens Ahlers & Robert Göllinger

Zusammenfassung

Programmierkenntnisse gewinnen in technischen Studiengängen zunehmend an Bedeutung. Je-
doch stehen in Programmierübungen häufig zu wenige Tutor:innen zur Verfügung, die die Studie-
renden beim Lösen der Programmieraufgaben unterstützen. Deshalb wird ein KI-System entwickelt,
das die Studierenden jederzeit und individuell beim Lösen der Programmierübungen unterstützt.
Im Gegensatz zu klassischen Ansätzen analysiert das KI-System nicht den programmierten Code,
sondern fokussiert sich auf die Zwischen- und Endergebnisse (z. B. erzeugte Daten, Plots). Anhand
dieser gibt das KI-System Hinweise und Erklärungen, um das selbstständige Arbeiten und kritische
Denken ohne Musterlösung zu fördern. Ein erster Prototyp wurde im Rahmen einer Programmier-
übung eingesetzt und mit positiver Resonanz evaluiert.

Schlüsselwörter: Programmierübung; KI-System; Prototyp; individuelles Lernen;
Fehlerklassifikation

AI-Assisted Programming through Result-Centered Error Classification

Potentials for Creating New Learning Rooms

Abstract

Programming skills are becoming increasingly important in technical degree programs. However,
there are often too few tutors available in programming exercises to support students in solving pro-
gramming tasks. Therefore, an AI system is being developed that supports students at any time and
individually in solving programming exercises. Unlike traditional approaches, the AI system does
not analyze the programmed code but focuses on intermediate and final results (e. g., generated data,
plots). The AI system uses these to provide hints and explanations to encourage independent work
and critical thinking without a given solution. The first prototype was implemented in the context of a
programming exercise and evaluated with positive feedback.

Keywords: Programming Exercise; AI System; Prototype; Individual Learning; Error Classification

https://wbv.de/die-hochschullehre

1 Einleitung

In der heutigen digitalen Welt sind Programmierkenntnisse für technische Berufe unverzichtbar
geworden, da die Softwareentwicklung ein zentraler Innovationsfaktor zur Entwicklung neuer tech-
nischer Systeme ist. Vor diesem Hintergrund gewinnen Programmierübungen in technischen Stu-
diengängen immer mehr an Bedeutung, da sie den Studierenden nicht nur theoretisches Wissen
vermitteln, sondern auch praktische Fähigkeiten fördern. Diese Fähigkeiten zählen zu den soge-
nannten „21st Century Skills“, insbesondere zu den Kompetenzen „Information and communica-
tions technology operations and concepts“, die für die akademische und berufliche Bildung gefordert
werden (Ananiadou & Claro, 2009). Ein unverzichtbarer Bestandteil dieser Programmierübungen
sind Tutor:innen, die die Lernenden bei der Bearbeitung der Programmieraufgaben unterstützen.
Allerdings stehen diese oft nur während der Präsenzzeit der Übung zur Verfügung. Darüber hinaus
betreut aufgrund der begrenzten finanziellen Mittel ein:e Tutor:in nicht selten eine große Anzahl an
Studierenden. Auch die Zeit der Tutor:innen wird nicht bestmöglich genutzt, da sie oftmals mit
leicht zu beantwortenden und wiederkehrenden Fragen konfrontiert sind. All diese Faktoren führen
in vielen Fällen zu einer unzureichenden Betreuung der Studierenden, was den Lernerfolg behin-
dert.

Die derzeitige Lehrpraxis stützt sich zudem auf traditionelle Methoden wie die Bereitstellung von
Musterlösungen oder die automatische Codeanalyse, sodass den Studierenden ein definierter Lö-
sungsweg vorgegeben wird. Dies führt dazu, dass dieser Lösungsweg präferiert und somit ein indivi-
dueller Lösungsweg oft unterbunden wird. Zur Unterstützung und Förderung eines individuellen
Lösungsweges wird im Rahmen des Projektes „KI-unterstützte Programmierübung“ ein neuartiges
KI-System entwickelt, das den Studierenden jederzeit zur Verfügung steht. Dieses KI-System soll im
Gegensatz zu heute bekannten Unterstützungssystemen nicht den Code analysieren, sondern sich
auf die Bewertung von Zwischen- und Endergebnissen konzentrieren. Hierfür werden die Zwischen-
und Endergebnisse mithilfe künstlicher neuronaler Netze klassifiziert und die vorliegenden Fehler
ermittelt. Dies ermöglicht dem KI-System, den Studierenden automatisierte Rückmeldungen und
Unterstützung zu geben.

Der Einsatz eines KI-gestützten Systems verspricht nicht nur eine Verbesserung des Verständnis-
ses von komplexen Zusammenhängen für die Studierenden, sondern entlastet zudem menschliche
Tutor:innen von Routinefragen und ermöglicht ihnen eine konzentrierte Auseinandersetzung mit
individuellen Detailfragen. Das KI-System leistet somit einen wichtigen Beitrag zur Weiterentwick-
lung innovativer Lehrkonzepte im Bereich technischer Studiengänge und zeigt auf, wie moderne
Technologien genutzt werden können, um das Lernen effektiver und individueller zu gestalten. Hier-
für werden in Abschnitt 2 zunächst die theoretischen und empirischen Grundlagen vorgestellt. An-
schließend werden in Abschnitt 3 mögliche Lehrkonzepte und die Funktionsweise des KI-Systems
beschrieben. Abschließend werden in Abschnitt 4 die Evaluationsergebnisse vorgestellt und in Ab-
schnitt 5 die gewonnenen Erkenntnisse diskutiert.

2 Theoretische und empirische Grundlagen

Mit stetig wachsender Bedeutung der Programmierausbildung rücken Herausforderungen zur Un-
terstützung von Studierenden sowie dem Einsatz innovativer Technologien wie Künstlicher Intelli-
genz (KI) stärker in den Fokus der Lehre. In den letzten Jahren hat sich die Programmierausbildung
stark verändert, wobei ein zunehmender Fokus auf praxisorientierten Lehrmethoden liegt. Theorien
des konstruktivistischen Lernens betonen die Bedeutung aktiver Teilnahme und selbstgesteuerten
Lernens (Baker & Siemens, 2014). Programmierübungen haben sich als effektives Mittel etabliert,
um nicht nur technische Fähigkeiten zu vermitteln, sondern auch Problemlösungsfähigkeiten zu
fördern.

Sebastian Stemmler, Jens Ahlers & Robert Göllinger 189

die hochschullehre 2026

Traditionelle Lehrmethoden stützen sich vor allem auf Analysemethoden zur Bewertung des
programmierten Codes. Die derzeitige Lehrpraxis umfasst hierfür vor allem statische oder dynami-
sche Ansätze der Codeanalyse. Die statische Analyse bewertet dabei den Code, ohne ihn auszufüh-
ren (Striewe & Goedicke, 2014). Hierdurch können beispielsweise Typendefinition, Datenflüsse (Ver-
änderung der Daten im Programmverlauf) und Kontrollflüsse (Reihenfolge der ausgeführten
Operationen) überprüft werden. Im Kontext der Programmanalyse lässt sich zwischen der Analyse
des Quellcodes und der Analyse des vom Compiler erzeugten Codes (z. B. Bytecode) unterscheiden.
Für Lehrzwecke ist jedoch nahezu ausschließlich die Quellcodeanalyse von Bedeutung, da sie direkt
an den von den Studierenden geschriebenen Programmen ansetzt. Mithilfe abstrakter Syntaxbäume
kann die Codestruktur komprimiert dargestellt und analysiert werden, sodass auch die Semantik
analysiert werden kann (Truong et al., 2005).

Die dynamische Analyse bewertet dagegen das Verhalten eines Programms während seiner
Ausführung (de Silva, Samarasekara & Hettiarachchi, 2023). Hier existieren verschiedenste Verfah-
ren, die vorrangig dazu dienen die Leistungsfähigkeit des Codes zu bewerten sowie sicherheitskri-
tische Implementierungsfehler und im Code nicht berücksichtigte Zustände zu identifizieren.
Truong et al. (2005) stellen ein Framework vor, das die dynamische Analyse als Schlüsselkompo-
nente einsetzt, um das Verhalten des Programms unter verschiedenen Bedingungen zu evaluieren.
Hierdurch können Abweichungen zur Musterlösung identifiziert und den Studierenden als Feed-
back mitgeteilt werden. Fonte et al. (2013) erweitern die klassische dynamische Analyse, indem sie
die Ausgabe des Programms mit der erwarteten Ausgabe auf semantischer Ebene vergleichen.

Ein hybrider Ansatz kombiniert sowohl statische als auch dynamische Analysemethoden und
bietet somit eine umfassendere Fehlerabdeckung. Ein Beispiel hierfür ist das Tool ASSYST, das ver-
schiedene Arten von Fehlern identifizieren kann – von syntaktischen bis hin zu logischen Fehlern
(Jackson & Usher, 1997). Ein weiterer Ansatz ist AutoLEP, das syntaktische Fehler und strukturelle
Mängel des Codes entdeckt (Wang et al., 2011). Außerdem wird bei Ramos et al. (2013) eine Erweite-
rung des Moodle-Lernmanagementsystems vorgestellt, die MATLAB-Aufgaben automatisch korri-
gieren kann.

Zunehmend finden auch KI-gestützte Systeme Eingang in die Programmierausbildung. Statt
nur den finalen Code zu bewerten, analysieren diese KI-gestützten Systeme auch Zwischenstände,
um personalisiertes Feedback zu ermöglichen und individuelle Lösungswege zu fördern. Ein Beispiel
ist der Onlinekurs „CS50“ der Harvard University, der KI-basierte Feedbackmechanismen einsetzt,
um Studierende bereits während des Programmierens auf typische Fehler oder Verbesserungsmög-
lichkeiten hinzuweisen (Malan et al., 2021). Hierbei werden vordefinierte Testfälle mit verschiedenen
Eingaben ausgeführt und die Ausgaben verglichen.

Im Unterschied zu klassischen Ansätzen können ML-Modelle aus großen Datenmengen lernen
und komplexe Muster im Quellcode erfassen (Sharma et al., 2021). Jedoch hängt ihr Erfolg stark von
der Qualität der verwendeten Datensätze ab. Die Vorbereitung dieser Datensätze ist zeitaufwendig
und erfordert zudem das Training komplexer Modelle mit hoher Rechenleistung.

Alle vorgestellten Ansätze können verschiedenste Fehler identifizieren. Jedoch hängt die Fehler-
erkennung maßgeblich von der implementierten Musterlösung bzw. deren bereitgestellten Lösungs-
varianten ab. In ingenieurwissenschaftlichen Fächern sind zudem visuelle Ausgaben (z. B. Plots,
Zeitverläufe und Kennfelder) von großer Bedeutung, da sie den Studierenden helfen, algorithmi-
sches Verhalten zu verstehen und potenzielle Fehler zu erkennen. Dieser Aspekt wird bisher von
allen beschriebenen Ansätzen vernachlässigt. Die gezielte Analyse solcher visuellen Ergebnisse bietet
jedoch Potenzial, um die Qualität der Betreuung weiter zu verbessern. Diese Lücke adressiert das im
Folgenden vorgestellte KI-System, indem es die Analyse von Zwischen- und Endergebnissen inte-
griert und damit eine individuelle Rückmeldung ermöglicht.

190 KI-unterstützte Programmierung mittels ergebniszentrierter Fehlerklassifikation

wbv.de/die-hochschullehre

3 Beschreibung des Lehrkonzeptes

Das KI-System wird im Rahmen der Lehrveranstaltung „Maschinelles Lernen in der industriellen
Regelungstechnik“ entwickelt und erprobt. Die Lehrveranstaltung setzt sich zusammen aus einer
Vorlesung und einer Übung. In der Vorlesung werden die theoretischen, methodischen Grundlagen
vermittelt und in der Übung angewendet. Die Übung erfolgt in Form von Programmieraufgaben in
MATLAB/Simulink, um eine ingenieurstypische Arbeitsweise zu lehren. Vorlesung und Übung
sind über die Lernziele nach Bloom (1956) miteinander verknüpft, sodass Erlerntes aus der Vorle-
sung direkt in der Übung angewendet werden kann.

3.1 Didaktischer Ansatz
Im Rahmen der Programmierübung sollen die Studierenden zu einer ingenieursnahen und selbst-
ständigen Arbeitsweise motiviert werden. Deshalb werden die Programmierübungen zunächst in
Form einer Selbstlernphase vorbereitet. In der anschließenden Präsenzzeit können auftretende Pro-
bleme und Fragen mit den Tutor:innen diskutiert werden. Während der Präsenzzeit zeigt sich je-
doch, dass die Programmieraufgaben häufig nicht bearbeitet werden. Sei es, weil die Studierenden
sich nicht sicher sind, ob ihre Lösung richtig ist, oder weil sie aufeinander aufbauende Teilaufgaben
nicht lösen können. Aus diesem Grund ist das KI-System so konzipiert, dass es den Studierenden zu
jeder Zeit zur Verfügung steht. Es kann also zur Vorbereitung während der Selbstlernphase, wäh-
rend der Präsenzzeit, zur Nachbearbeitung und zur Klausurvorbereitung genutzt werden. Zudem
reduziert das System die Barriere zur Inanspruchnahme von Unterstützung auf ein Minimum, da es
anonym von den Studierenden genutzt wird und dadurch keine gefühlten Konsequenzen folgen
können. Weiterhin berücksichtigt das KI-System unterschiedliche Leistungsstände und Fähigkeiten
der Studierenden. Aus diesem Grund ist das KI-System so realisiert, dass es die folgenden Rahmen-
bedingungen berücksichtigt:

1. Die Studierenden werden bei der Umsetzung individueller Lösungswege unterstützt, sodass
eine Musterlösung nicht benötigt wird.

2. Studierende können selbst entscheiden, ob sie Feedback von dem KI-System erhalten.
3. Studierende erhalten auch nach Teilaufgaben eine Rückmeldung von dem KI-System und

nicht erst nach der vollständigen Bearbeitung der Aufgaben.
4. Die Erläuterungen des KI-Systems erfolgen mit unterschiedlichem Detaillierungsgrad. So wird

bei erstmaligem Auftreten eines Fehlers nur die Information ausgegeben, dass ein Fehler vor-
handen ist. Bei wiederholtem Auftreten des gleichen Fehlers wird die Unterstützung inkremen-
tell ausführlicher.

Hierdurch lässt sich ein holistisches Lehrkonzept gemäß Abbildung 1 realisieren, das Selbstlernpha-
sen und Präsenzphasen als ganzheitlichen Lernprozess betrachtet. Anstatt Wissen nur während der
Präsenzzeit zu vermitteln, können Studierende so unterschiedliche Unterstützungsformate und Er-
klärungsarten in Anspruch nehmen. Es ist keinesfalls das Ziel, dass das KI-System die Tutor:innen
vollständig ersetzt, da die menschliche Interaktion und Beobachtung wesentliche Bestandteile der
individuellen Förderung und Unterstützung in der Lehre sind.

Sebastian Stemmler, Jens Ahlers & Robert Göllinger 191

die hochschullehre 2026

Abbildung 1: Angestrebtes didaktisches Konzept bestehend aus Selbstlern- und Präsenzphase, wobei die Interaktion zwi-
schen Studierenden und KI-System jederzeit möglich ist

3.2 Funktionsweise des KI-Systems
Im Gegensatz zu klassischen Systemen wird nicht der programmierte Code bewertet. Stattdessen
sollen Zwischen- und Endergebnisse in Form von Daten, Plots etc. analysiert werden. Dies verhin-
dert, dass das KI-System einen bestimmten Lösungsweg forciert. Stattdessen ermöglicht das KI-Sys-
tem den Studierenden, einen alternativen Lösungsweg zu finden. Hierfür wurde zunächst ein Proto-
typ entwickelt, der a priori generierte Trainingsdaten nutzt. Das heißt, dass anhand der Musterlösung
zunächst verschiedene Lösungsvarianten und Fehler umgesetzt werden. Für diese Lösungsvarianten
und Fehler werden die Zwischenergebnisse und Plots gespeichert. Zusätzlich werden Fehlerklassen
definiert, die den Lösungsvarianten und Fehlern zugeordnet werden. Anhand dieser synthetisch er-
zeugten Trainingsdaten werden künstliche neuronale Netze mittels überwachten Lernens trainiert,
um die richtigen und falschen Lösungen zu klassifizieren. Die so trainierten künstlichen neuronalen
Netze bilden somit einen essenziellen Bestandteil des KI-Systems.

In Abbildung 2 wird die Funktionsweise des KI-Systems im Kontext des Lehrbetriebes verdeut-
licht. Dabei wird davon ausgegangen, dass das KI-System bereits a priori anhand von Trainingsdaten
trainiert ist. In den ersten beiden Schritten in Abbildung 2 wird eine Vorlage bereitgestellt, die an
geeigneten Stellen durch den Programmcode der Studierenden ergänzt werden soll. Hierdurch wird
den Studierenden ein Bearbeitungsrahmen gegeben, der den Fokus auf die jeweiligen Lerninhalte
der Übung legt. Bis hierhin entspricht das Übungskonzept den bisherigen Lehrkonzepten in Pro-
grammierübungen (grau hinterlegt in Abbildung 2).

Abbildung 2: Funktionsweise des KI-Systems im Lehrbetrieb, unterteilt in vier Schritte

192 KI-unterstützte Programmierung mittels ergebniszentrierter Fehlerklassifikation

wbv.de/die-hochschullehre

Werden die Teilabschnitte des Programmcodes von den Studierenden ausgeführt, kommt es (verbor-
gen für die Studierenden) zur Fehlerklassifikation. Das heißt, dass die a priori trainierten, künstlichen
neuronalen Netze anhand der erzielten Zwischenergebnisse und Plots eine Fehlerklassifikation
durchführen. Anschließend gibt das KI-System anhand der Fehlerklassifikation den Studierenden
zunächst einen Hinweis, ob die Lösung fehlerfrei oder fehlerhaft ist. Bei wiederholt falscher Zwi-
schenlösung werden die Hinweise des KI-Systems umfangreicher. Die Studierenden erhalten so zu-
nehmend detaillierteres Feedback bzw. Hinweise, um ihren implementierten Code weiterzuentwi-
ckeln bzw. zu korrigieren. Hierdurch sollen häufig auftretende Probleme der Studierenden bereits
während der Selbstlernphase von den Studierenden gelöst werden können. Die menschlichen Tu-
tor:innen können sich dann während der Präsenzzeit verstärkt auf weitergehende und individuelle
Detailfragen der Studierenden konzentrieren.

3.3 Technische Umsetzung
Die Programmieraufgaben der oben genannten Lehrveranstaltung erfolgen in MATLAB/Simulink.
Für eine möglichst einfache Integrierbarkeit und Kompatibilität ist auch das KI-System in MATLAB/
Simulink implementiert. Jedoch ist das KI-System so generisch konzipiert, dass es konzeptionell mit
geringem Aufwand auf andere Programmiersprachen und Übungen übertragen werden kann.

Zum gegenwärtigen Zeitpunkt wurde das KI-System als Prototyp entwickelt, der lokal auf den
Computern der Studierenden ausführbar ist. Das bedeutet, dass die Studierenden für jede Program-
mieraufgabe ein MATLAB-Live-Skript und ggf. ein zusätzliches Simulinkmodell erhalten. Das MAT-
LAB-Live-Skript enthält die Aufgabenbeschreibungen sowie ein Grundgerüst für den zu implemen-
tierenden Code. Nach geeigneten Teilaufgaben wird das KI-System im Hintergrund aufgerufen,
sodass die Zwischenergebnisse der Studierenden klassifiziert werden. Im weiteren Projektverlauf
wird das KI-System auf einen Server implementiert, sodass die Zwischenergebnisse anonymisiert
an den Server geschickt, von diesem verarbeitet werden und den Studierenden eine geeignete Hilfe-
stellung gegeben wird. Hierdurch erhält das KI-System während des Semesters kontinuierlich neue
Trainingsdaten, sodass sich das KI-System kontinuierlich verbessern kann. Darüber hinaus können
die anonymisierten Daten zur Analyse der Lernerfolge genutzt werden, sodass sich die Tutor:innen
entsprechend auf die Präsenzzeit vorbereiten können.

4 Evaluation

Der entwickelte Prototyp des KI-Systems wurde im regulären Lehrbetrieb im Rahmen der ersten
Übungseinheit des Semesters eingesetzt. Zur begleitenden Evaluierung wurde im Rahmen der Lehr-
veranstaltung eine empirische Untersuchung durchgeführt. Ziel war die Untersuchung der Wirk-
samkeit und Akzeptanz des KI-Systems im Kontext der Programmierausbildung. Der Fokus lag ins-
besondere auf der Wahrnehmung der Studierenden hinsichtlich der Unterstützungsqualität, der
Nützlichkeit der bereitgestellten Rückmeldungen sowie dem Zusammenspiel mit menschlichen Tu-
toren.

Die Evaluierung erfolgte mittels eines standardisierten Fragebogens, der unter anderem sieben
Aussagen zur Nutzung und Wirkung des KI-Systems umfasste. Die Teilnehmenden bewerteten jede
Aussage auf einer Likert-Skala von 1 („sehr gut“) bis 5 („sehr schlecht“). Die Ergebnisse sind in Abbil-
dung 3 dargestellt.

Sebastian Stemmler, Jens Ahlers & Robert Göllinger 193

die hochschullehre 2026

Abbildung 3: Ergebnisse einer ersten Befragung von 16 Teilnehmenden des Kurses basierend auf der ersten Übung der
Lehrveranstaltung

Die aggregierten Ergebnisse der Evaluierung zeigen ein überwiegend positives Bild hinsichtlich des
Mehrwertes eines KI-Systems. So hat das Feedback des KI-Systems einem Großteil der Studieren-
den dabei geholfen, die aufgetretenen Fehler zu identifizieren. Lediglich drei Studierenden hat das
KI-System bei der Fehlersuche nicht geholfen. Auch die unterschiedlich ausführlichen Feedback-
level wurden als überwiegend hilfreich bewertet. Jedoch wurde das KI-System nicht immer als unter-
stützend wahrgenommen. Hier gilt es in weiteren Evaluationen die Ursachen zu untersuchen. Es
lässt sich vermuten, dass die Ursachen für Fehler und Unsicherheiten an ein und derselben Stelle
des Codes sehr vielfältig sein können. So ist die Frage zu stellen, ob beispielsweise Informationen
über die individuellen Vorkenntnisse der Studierenden berücksichtigt werden können, um das Feed-
back des KI-Systems zu individualisieren. Dies zeigt sich auch darin, dass die Verständnisförderung
sehr unterschiedlich wahrgenommen wurde.

Etwas positiver wurde die ständige Verfügbarkeit des KI-Systems bewertet, was auf das Potenzial
zur Ergänzung asynchroner Lernangebote hinweist. Auf der anderen Seite ist klar festzuhalten, dass
das KI-System von den Studierenden nicht als gleichwertiger Ersatz für menschliche Tutor:innen
wahrgenommen wird. Vielmehr wird die Kombination aus KI-System und menschlichen Tutor:in-
nen von den Studierenden als hilfreich für den Lernerfolg wahrgenommen. Dies bestärkt das ange-
strebte Lehrkonzept, bestehend aus Selbstlernphasen mit dem KI-System und einer Präsenzphase
mit menschlichen Tutor:innen. Zusammenfassend lässt sich daher festhalten, dass der Prototyp be-
reits auf überwiegend positive Resonanz stößt. Das vorgeschlagene KI-System bietet somit eine viel-
versprechende Ergänzung zu klassischen Lehrkonzepten und damit zur Unterstützung des Lernpro-
zesses. Aus diesem Grund wird das KI-System im folgenden Wintersemester auf alle Übungen der
Lehrveranstaltung „Maschinelles Lernen in der industriellen Regelungstechnik“ angewendet und
erneut evaluiert.

194 KI-unterstützte Programmierung mittels ergebniszentrierter Fehlerklassifikation

wbv.de/die-hochschullehre

5 Diskussion

Alle heute bekannten Ansätze zur Unterstützung von Programmierübungen verfolgen das Ziel,
Code automatisch analysieren bzw. bewerten zu können, um den Korrekturaufwand in Form von
Prüfungen o. Ä. zu reduzieren. Dabei bieten die Ansätze auch viele Möglichkeiten zur selbstständi-
gen Bearbeitung von Programmieraufgaben. Jedoch haben alle bekannten Ansätze gemeinsam, dass
in aller Regel der Code analysiert bzw. der Code mit einer Musterlösung verglichen wird. Das vorge-
stellte KI-System verfolgt dagegen einen Perspektivwechsel, indem es vor allem Zwischenergebnisse
in Form von Zeitverläufen und Plots betrachtet. Hierdurch sollen individuelle Lösungswege geför-
dert werden. Zudem ist das KI-System jederzeit verfügbar, sodass es vor allem individuelle Selbst-
lernphasen unterstützt. Das KI-System ermöglicht aber auch

1. kollaborative Selbstlernphasen,
2. Präsenzphasen und
3. hybride Lernphasen.

Hier kann das KI-System beispielsweise Informationen zu häufigen Fehlern sammeln und in kolla-
borativen Selbstlernphasen Studierende bei der Bildung geeigneter Lerngruppen unterstützen. Mit-
hilfe von Gamification-Elementen sind auch spielerische Ansätze zur Steigerung der Lernmotiva-
tion denkbar.

Im Rahmen von Präsenzphasen kann das KI-System häufig auftretende Probleme bereits adres-
sieren oder bei korrekter Lösung zusätzliche Sicherheit bieten, sodass sich die zur Verfügung stehen-
den Tutor:innen auf die Beantwortung spezifischer Detailfragen konzentrieren können. Tutor:innen
sollen durch den Einsatz des KI-Systems keineswegs ersetzt werden, sondern diese bei der Beantwor-
tung von Fragen gezielt unterstützen. Auch können mit dem KI-System hybride Lernphasen reali-
siert werden, die sich beispielsweise aus einer vorbereitenden Selbstlernphase und einer Präsenz-
phase zusammensetzen. So können in der Präsenzphase alle Schwierigkeiten mit den Tutor:innen
diskutiert werden, die nicht in der Selbstlernphase gelöst werden konnten. Selbst Studierende, die
die Übung fehlerfrei bearbeiten, profitieren vom KI-System. So kann ihnen die Rückmeldung über
die Richtigkeit ihrer Lösung zusätzliche Sicherheit geben.

Aktuell wird das System in einem Kurs mit geringer Gruppengröße erprobt und entwickelt.
Perspektivisch soll das KI-System auch bei Kursen mit hoher Gruppengröße Anwendung finden, bei
denen der Mangel an Tutor:innen das Anbieten einer Programmierübung aktuell erschwert bzw.
verhindert.

Das vorgestellte KI-System bietet somit vielfältige Einsatzmöglichkeiten in der Lehre. Darüber
hinaus ist es konzeptionell auf andere Programmiersprachen bzw. andere Programmierübungen
übertragbar. Die größte Herausforderung besteht aktuell noch in der Generierung geeigneter Trai-
ningsdaten. Dabei muss die Datenbank, die die Fehlerfälle enthält, kontinuierlich aktualisiert wer-
den, um auch solche Fehlerfälle zu erfassen, die ursprünglich nicht in der Datenbank enthalten wa-
ren. Hier sind in der Zukunft weitere Ansätze und Lehrkonzepte zu untersuchen.

Anmerkungen

Diese Arbeit entstand im Projekt „KI-unterstützte Programmierübung“ und wurde von der Stiftung
Innovation in der Hochschullehre im Rahmen der Ausschreibung „Freiraum 2023“ gefördert. Wir
danken der Stiftung vielmals für die Unterstützung.

Sebastian Stemmler, Jens Ahlers & Robert Göllinger 195

die hochschullehre 2026

Literatur

Ananiadou, K. & Claro, M. (2009). 21st Century Skills and Competences for New Millennium Learners in OECD
Countries, OECD Education Working Papers, 41. OECD Publishing. https://doi.org/10.1787/218525261154

Baker, R. & Siemens, G. (2014). Educational data mining and learning analytics. In R. K. Sawyer (Hrsg.), The
Cambridge handbook of the learning sciences (S. 253–272). Cambridge University Press. https://doi.org/
10.1017/CBO9781139519526.016

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals; Handbook I: Cog-
nitive domain. David McKay.

de Silva, D., Samarasekara, P. & Hettiarachchi, R. (2023). A comparative analysis of static and dynamic code
analysis techniques. TechRxiv. https://doi.org/10.36227/techrxiv.22810664.v1

Fonte, D., da Cruz, D., Gançarski, A. L. & Henriques, P. R. (2013). A flexible dynamic system for automatic
grading of programming exercises. In J. M. Fernandes, R. L. Aguiar & R. J. Machado (Hrsg.), Proceedings
of the 2nd Symposium on Languages, Applications and Technologies (SLATE 2013), Open Access Series in
Informatics (OASIcs), 29 (S. 129–144). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://
doi.org/10.4230/OASIcs.SLATE.2013.129

Jackson, D. & Usher, M. (1997). Grading student programs using ASSYST. In Proceedings of the twenty-eighth
SIGCSE technical symposium on computer science education (SIGCSE '97) (S. 335–339). Association for
Computing Machinery. https://doi.org/10.1145/268084.268210

Liu, R., Zhao, J., Xu, B., Perez, C., Zhukovets, Y. & Malan, D. J. (2025). Improving AI in CS50: Leveraging
Human Feedback for Better Learning. In Proceedings of the 56th ACM Technical Symposium on Computer
Science Education (Vol. 1, S. 715–721). Association for Computing Machinery. https://doi.org/10.1145/364
1554.3701945

Malan, D. J., Sharp, C., van Assema, J., Yu, B. & Zidane, K. (2021). CS50’s GitHub-based tools for teaching and
learning. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(SIGCSE ’21, S. 1354). Association for Computing Machinery. https://doi.org/10.1145/3408877.3432499

Ramos, J., Trenas, M. A., Gutiérrez, E. & Romero, S. (2013). E-assessment of Matlab assignments in Moodle:
Application to an introductory programming course for engineers. Computer Applications in Engineering
Education, 21(5), 728–736. https://doi.org/10.1002/cae.20520

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H. & Sarro, F. (2021). A survey on ma-
chine learning techniques for source code analysis. arXiv. https://doi.org/10.48550/arXiv.2110.09610

Striewe, M. & Goedicke, M. (2014). A review of static analysis approaches for programming exercises. In
M. Kalz & E. Ras (Hrsg.), Computer assisted assessment. Research into e-assessment (S. 100–113). Springer.
https://doi.org/10.1007/978-3-319-08657-6_10

Truong, N., Roe, P. & Bancroft, P. (2004). Static analysis of students' Java programs. In Proceedings of the
Sixth Australasian Conference on Computing Education (ACE '04), Vol. 30 (S. 317–325). Australian Com-
puter Society.

Truong, N., Roe, P. & Bancroft, P. (2005). Automated feedback for "fill in the gap" programming exercises. In
D. L. Tolhurst & S. Mann (Hrsg.), Proceedings of the 7th Australasian Conference on Computing Education
(ACE '05), Vol. 42 (S. 117–126). Australian Computer Society.

Wang, T., Su, X., Ma, P., Wang, Y. & Wang, K. (2011). Ability-training-oriented automated assessment in in-
troductory programming course. Computers & Education, 56(1), 220–226. https://doi.org/10.1016/j.com
pedu.2010.08.003

196 KI-unterstützte Programmierung mittels ergebniszentrierter Fehlerklassifikation

wbv.de/die-hochschullehre

https://doi.org/10.1787/218525261154
https://doi.org/10.1017/CBO9781139519526.016
https://doi.org/10.1017/CBO9781139519526.016
https://doi.org/10.36227/techrxiv.22810664.v1
https://doi.org/10.4230/OASIcs.SLATE.2013.129
https://doi.org/10.4230/OASIcs.SLATE.2013.129
https://doi.org/10.1145/268084.268210
https://doi.org/10.1145/3641554.3701945
https://doi.org/10.1145/3641554.3701945
https://doi.org/10.1145/3408877.3432499
https://doi.org/10.1002/cae.20520
https://doi.org/10.48550/arXiv.2110.09610
https://doi.org/10.1007/978-3-319-08657-6_10
https://doi.org/10.1016/j.compedu.2010.08.003
https://doi.org/10.1016/j.compedu.2010.08.003

Autoren

Dr. Sebastian Stemmler. RWTH Aachen University, Institut für Regelungstechnik, Aachen,
Deutschland; Orchid-ID: 0009-0003-2079-3431; E-Mail: s.stemmler@irt.rwth-aachen.de

Jens Ahlers. RWTH Aachen University, Institut für Regelungstechnik, Aachen, Deutschland;

E-Mail: j.ahlers@rwth-aachen.de

Robert Göllinger. RWTH Aachen University, Institut für Regelungstechnik, Aachen, Deutschland;
E-Mail: r.goellinger@rwth-aachen.de

Zitiervorschlag: Stemmler, S., Ahlers, J. & Göllinger, R. (2026). KI-unterstützte Programmierung
mittels ergebniszentrierter Fehlerklassifikation. Potenziale zur Schaffung neuer Lernräume. die
hochschullehre, Jahrgang 12/2026. DOI: 10.3278/HSL2618W. Online unter: wbv.de/die-hochschul
lehre

Sebastian Stemmler, Jens Ahlers & Robert Göllinger 197

die hochschullehre 2026

https://orcid.org/0009-0003-2079-3431
mailto:s.stemmler@irt.rwth-aachen.de
mailto:j.ahlers@rwth-aachen.de
mailto:r.goellinger@rwth-aachen.de
https://wbv.de/die-hochschullehre
https://wbv.de/die-hochschullehre

Die Open-Access-Zeitschrift die hochschullehre ist ein wissenschaftliches Forum für
Lehren und Lernen an Hochschulen.

Zielgruppe sind Forscherinnen und Forscher sowie Praktikerinnen und Praktiker in
Hochschuldidaktik, Hochschulentwicklung und in angrenzenden Feldern, wie auch
Lehrende, die an Forschung zu ihrer eigenen Lehre interessiert sind.

Themenschwerpunkte

•	 Lehr- und Lernumwelt für die Lernprozesse Studierender
•	 �Lehren und Lernen
•	 �Studienstrukturen
•	 �Hochschulentwicklung und Hochschuldidaktik
•	 �Verhältnis von Hochschullehre und ihrer gesellschaftlichen Funktion
•	 �Fragen der Hochschule als Institution
•	 �Fachkulturen
•	 Mediendidaktische Themen

wbv.de/die-hochschullehre

Alle Beiträge von die hochschullehre erscheinen im Open Access!

wbv Publikation · wbv Media GmbH & Co. KG · service@wbv.de · wbv.de

https://www.wbv.de/die-hochschullehre?pk_campaign=Inbook-Anzeige&pk_kwd=dieHochschullehre
https://wbv.de

