Inhalt

Vorwort 5				
1	Zelle, Gewebe, Organismus			
	1.1	Zellmodell: Wählerische Zellen, die keine sind	13	
	1.2	Plasmolyse: Vakuolen schrumpfen lassen	16	
	1.3	Wie Ionen in die Falle gehen	20	
2	Proj	ekte mit Wurzeln	25	
	2.1	Spitzenleistung: Wie Wurzeln wachsen	28	
	2.2	Wurzelwachstum – zum Mittelpunkt der Erde	30	
	2.3	Wachsen durch Teilen: Ablauf einer Mitose	33	
	2.4	Tankstelle: Wo nimmt die Wurzel Wasser auf?	37	
	2.5	Caspary-Streifen: Hydrophobes blockiert (Modellversuch)	39	
	2.6	Der Teil und das Ganze: Regeneration aus Wurzelsegmenten .	42	
	2.7	Die Wurzel lebt: Stoffaufnahme und -abgabe	44	
	2.8	Blau machen: Eisen in der Wurzelspitze	48	
	2.9	Im Sumpf stecken: Redox-Prozesse in Wurzeln	50	
	2.10	Chemotropismus: Wurzeln im Stoffgradienten	52	
	2.11	Abwehr und Vorsorge: Schwefel und Schwermetalle	55	
	2.12	Wurzeln unter Druck	57	
3	Proj	ekte mit Sprossachsen	61	
	3.1	Stoffleitung im Stängel: Erröten oder Verbläuen	64	
	3.2	Wasserleitung: Querschnitt blockiert den Aufstieg	66	
	3.3	Leitungsleistung: Wasser auf dem Weg	68	
	3.4	Stoffleitung im Phloem – die Münch-Hypothese	71	
	3.5	Zum Kringeln: Löwenzahn unter Stress	74	
	3.6	Lenticellen: Löcher zum Durchatmen	76	
	3.7	Streckung: Auxin lässt Achsen wachsen	79	
	3.8	Polarität: Verkehrte Verhältnisse	83	
	3.9	Aufstrebend: Wie schnell wächst die Sprossspitze?	85	

	3.10	Wie Bohnen ihre Runden drehen	87
	3.11	Ablenken vom geraden Pfad: Reaktion auf Seitenlicht	90
	3.12	Pflanzen um die Ecke locken: Positiver Phototropismus	93
	3.13	Licht formt und gestaltet: Photomorphogenese	95
	3.14	Angeschmiert: Wurzeln aus Sprossachsen	98
	3.15	Rote Bete: Farbdicht oder leck geschlagen?	100
	3.16	Lösemittel im Fluss: Osmose in Sprossknollen	103
4	-	ekte mit Laub- und Nadelblättern	105
	4.1	Laubaustrieb: Den Durchbruch schaffen	108
	4.2	Transpiration: Blätter sind nicht wasserdicht	111
	4.3	Wasserabgabe – Blätter geraten aus der Balance	114
	4.4	Blattdesign und Wasserhaushalt	116
	4.5	Nadelblätter – auch nicht ganz dicht	119
	4.6	Modellversuch: Der Randeffekt der Transpiration	121
	4.7	Die Pigmente grüner Blätter	123
	4.8	Farbiges Finale: Herbstfarben in Laubblättern	129
	4.9	Saisonende: Die Blätter fallen	132
	4.10	Abschied auf Raten: Grüne Inseln im bunten Herbstlaub	135
	4.11	Kinetin hält Blätter grün: Der Chlorophyll-Erhaltungstest	139
	4.12	Der Rotkohl-Indikator: Entwicklung einer Farbskala	141
	4.13	Lotusblatt und Autolack: Blätter reinigen sich selbst	146
	4.14	Vom Abfall zum Wertstoff: CO ₂ in der Photosynthese	149
	4.15	Sauerstoff erleichtert: Die Bojen-Methode	151
	4.16	Photosynthese: Zuckerspeicher grünes Blatt?	153
	4.17	Verstärkung: Grüne Blätter bauen Reserven auf	156
	4.18	Lichtungen in Blättern: Stärkebildung und Chlorophyll	160
	4.19	Import und Export: Zuckerstrom in Blattleitbahnen	162
	4.20	Positivbilanz: Blätter binden CO ₂	165
	4.21	Frischluft aus dem Blatt: Nebenprodukt Sauerstoff	167
	4.22	Wie grüne Blätter atmen	169
	4.23	Nachts werden sie sauer: Malat und CAM-Pflanzen	172

	4.24	Sukkulenz und CAM: Nächtlicher CO ₂ -Einbau	172
	4.25	Zweierlei Chloroplasten: Pflanzen mit C ₄ -Photosynthese	179
	4.26	C_3 und $C_4 \!\!:$ Unterschiede im Umgang mit dem CO_2	183
	4.27	Spaltöffnungen: Der Turgor regelt die Weite	185
	4.28	Blätter lassen sich hängen: Nyktinastische Bewegungen	188
	4.29	Schlussakkord: Ethen lässt die Blätter fallen	190
	4.30	Zylindertest der Zuwachsleistung	192
	4.31	Reizend: Blätter bewegen sich – auch schlagartig	195
5	Proj	ekte mit Blüten und Blütenteilen	199
	5.1	Blühinduktion: Lange Tage oder lange Nächte?	206
	5.2	Feste Ladenzeiten: Bewegung ist Wachstum	209
	5.3	Temperaturempfindliche Köpfe	211
	5.4	In anderem Licht betrachtet: UV-Absorption von Blüten	213
	5.5	Insekten erregen Anstoß: Blütenteile bewegen sich	216
	5.6	Ausgeschüttelt: Blütenfarbstoffe im Zweiphasensystem	219
	5.7	$\label{thm:constraint} \mbox{Kornblumenblau und rosenrot: Hydrophile Bl\"{u}tenpigmente} \$	222
	5.8	Trennung auf dem Papier: Hydrophile Blütenpigmente	225
	5.9	Nuancierung: pH-Wert und Blütenfarbe	228
	5.10	Anthocyane und Betalaine – Trennung nach der Ladung	230
	5.11	Süße Flüssignahrung: Dem Nektar auf der Spur	233
	5.12	Nahrhaftes: Aminosäuren im Blütennektar	237
	5.13	Wie Blütendüfte sichtbar werden	240
	5.14	Atmung: Stoffwechsel in Blüten(teilen)	242
	5.15	Pulverfeine Massenware: Pollenkörner untersuchen	245
	5.16	Chemisch gelenkt: Wachsender Pollenschlauch	251
	5.17	Glänzende Erscheinung: Spiegelblanke Blütenblätter	254
6	Proj	ekte mit Früchten und Samen	255
	6.1	Schützende Schale: Warum der Apfel knackig bleibt	259
	6.2	Grüne Früchte, schnelle Reifung	261
	6.3	Sauer macht lustig: DC-Analyse von Fruchtsäuren	262

6.4	Süße Früchtchen: Zucker im Fruchtfleisch	264			
6.5	Die Zucker-Alternative: Polyole in Früchten	267			
6.6	Freie Aminosäuren in Früchten und Samen	271			
6.7	Rassendiskriminierung: Früchte und ihre Chemie	273			
6.8	Bräunen – manchmal auch ohne Sonne	276			
6.9	Chemische Bremse: Keine Keimung in der Frucht	278			
6.10	Betriebspause: Erzwungene Samenruhe	280			
6.11	Heftig errötet – Vitalitätstest mit TTC	282			
6.12	Aufbau nach Abbau: Keimung mobilisiert Reserven	284			
6.13	Kerniges: Starthilfe für das Apfelbäumchen	286			
6.14	Knallerbsen: Samen als Sprengmittel	289			
6.15	Wasser, Quellung, Keimung – und ganz geschwollen tun	290			
6.16	Schwellung nach Quellung: Samen machen Druck	292			
6.17	Samenkeimung: Lichtscheu oder sonnenhungrig?	294			
6.18	Kleines Heizwerk: Keimen, atmen und erwärmen	296			
6.19	Atmung: Stoffabbau mit CO ₂ -Abgabe	297			
6.20	Enzym auf Abruf: Gibberellinsäure und Weizen-Karyopsen	299			
6.21	Kraftpakete: Samen speichern Fettreserven	302			
6.22	Respiratorischer Quotient: Fett oder Kohlenhydrat?	306			
6.23	Orientierung: Mit den Blättern sehen?	308			
6.24	Bohnen-Biometrie: Mittelmaß und Ausreißer	312			
Literaturhinweise 3					
Register 3					